

[image: _images/AiiDA_transparent_logo.png]

The aiida-testing pytest plugin

A pytest plugin to simplify testing of AiiDA [http://www.aiida.net] plugins. It implements
fixtures to cache the execution of codes:

	mock_code: Caches at the level of the code executable. Use this for
testing calculation and parser plugins, because input file generation
and output parsing are also being tested.

	export_cache: Uses the AiiDA caching feature, in combination with
an automatic database export / import. Use this to test high-level
workflows.

aiida-testing is available at http://github.com/aiidateam/aiida-testing

	User guide
	Getting started

	Using mock_code

	Using export_cache

	Developer guide
	Full setup

	Running the tests

	Automatic coding style checks

	Continuous integration

	Online documentation

	Local documentation

	PyPI release

	API documentation
	Subpackages

	Module contents

If you use AiiDA [http://www.aiida.net] for your research, please cite the following work:

Giovanni Pizzi, Andrea Cepellotti, Riccardo Sabatini, Nicola Marzari,
and Boris Kozinsky, AiiDA: automated interactive infrastructure and database
for computational science, Comp. Mat. Sci 111, 218-230 (2016);
https://doi.org/10.1016/j.commatsci.2015.09.013; http://www.aiida.net.

aiida-testing is released under the Apache license.

Indices and tables

	Index

	Module Index

	Search Page

User guide

	Getting started
	Installation

	Usage

	Using mock_code
	Limitations

	Using export_cache

Getting started

This page should contain a short guide on what the plugin does and
a short example on how to use the plugin.

Installation

Use the following commands to install aiida-testing:

pip install aiida-testing

Usage

Once installed the pytest fixtures should show up in:

pytest --fixtures

Using mock_code

mock_code provides two components:

	A command-line script aiida-mock-code (the mock executable) that is executed instead of the actual executable and acts as a cache for the outputs of the actual executable

	A pytest fixture mock_code_factory() that sets up an AiiDA Code pointing to the mock executable

In the following, we will set up a mock code for the diff executable in three simple steps.

First, we want to define a fixture for our mocked code in the conftest.py:

import os
import pytest

Directory where to store outputs for known inputs (usually tests/data)
DATA_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data')

@pytest.fixture(scope='function')
def mocked_diff(mock_code_factory):
 """
 Create mocked "diff" code
 """
 return mock_code_factory(
 label='diff',
 data_dir_abspath=DATA_DIR,
 entry_point='diff',
 # files *not* to copy into the data directory
 ignore_files=('_aiidasubmit.sh', 'file*')
)

Second, we need to tell the mock executable where to find the actual diff executable by creating a .aiida-testing-config.yml file in the top level of our plugin.

Note

This step is needed only when we want to use the actual executable to (re)generate test data.
As long as the mock code receives data inputs whose corresponding outputs have already been stored in the data directory, the actual executable is not used.

mock_code:
 # code-label: absolute path
 diff: /usr/bin/diff

Note

Why yet another configuration file?

The location of the actual executables will differ from one computer to the next, so hardcoding their location is not an option.
Even the names of the executables may differ, making searching for executables in the PATH fragile.
Finally, one could use dedicated environment variables to specify the locations of the executables, but there may be many of them, making this approach cumbersome.
Ergo, a configuration file.

Finally, we can use our fixture in our tests as if it would provide a normal Code [https://aiida.readthedocs.io/projects/aiida-core/en/v1.6.8/reference/apidoc/aiida.orm.html#aiida.orm.Code]:

def test_diff(mocked_diff):
 # ... set up test inputs

 inputs = {
 'code': mocked_diff,
 'parameters': parameters,
 'file1': file1,
 'file2': file2,
 }
 results, node = run_get_node(CalculationFactory('diff'), **inputs)
 assert node.is_finished_ok

When running the test via pytest for the first time, aiida-mock-code will pipe through to the actual diff executable.
The next time, it will recognise the inputs and directly use the outputs cached in the data directory.

Note

aiida-mock-code “recognizes” calculations by computing a hash of the working directory of the calculation (as prepared by the calculation input plugin).
It does not rely on the hashing mechanism of AiiDA.

Don’t forget to add your data directory to your test data in order to make them available in CI and to other users of your plugin!

Since the .aiida-testing-config.yml is usually specific to your machine, it usually better not to commit it.
Tests will run fine without it, and if other developers need to change test inputs, they can easily regenerate a template for it using pytest --testing-config-action=generate.

For further documentation on the pytest commandline options added by mock code, see:

$ pytest -h
...
custom options:
 --testing-config-action=TESTING_CONFIG_ACTION
 Read .aiida-testing-config.yml config file if present
 ('read'), require config file ('require') or generate
 new config file ('generate').
 --mock-regenerate-test-data
 Regenerate test data.

Limitations

	No support for remote codes yet

	Not tested with MPI

Using export_cache

TODO: an introduction to export_cache

Developer guide

Full setup

The following commands give you a complete development setup for
aiida-testing.
Make sure to run this in the appropriate virtual environment:

git clone https://github.com/aiidateam/aiida-testing.git
cd aiida-testing
pip install -e .[dev]
pre-commit install

Commands to install only parts of the development setup are included
below.

Running the tests

The following will discover and run all unit tests:

pip install -e .[testing]
pytest

Automatic coding style checks

Enable enable automatic checks of code sanity and coding style:

pip install -e .[pre_commit]
pre-commit install

After this, the yapf [https://github.com/google/yapf] formatter,
the pylint [https://www.pylint.org/] linter, the
prospector [https://pypi.org/project/prospector/] code analyzer, and
the mypy [http://www.mypy-lang.org/] static type checker will run
at every commit.

If you ever need to skip these pre-commit hooks, just use:

git commit -n

Continuous integration

aiida-testing comes with a ci.yml file for continuous integration tests on every commit using GitHub Actions. It will:

	run all tests

	build the documentation

	check coding style and version number

Online documentation

The documentation of aiida-testing is continuously being built on
ReadTheDocs [https://readthedocs.org/], and the result is shown on
https://aiida-testing.readthedocs.org/.

If you have a ReadTheDocs account, you can also enable it on your own
fork for testing, but you will have to use a different name.

Local documentation

Of course, you can also build the documentation locally:

pip install -e .[docs]
cd docs
make

PyPI release

The process for creating a distribution and uploading it to PyPI is:

pip install twine
python setup.py sdist
twine upload dist/*

This can only be done by people who are registered as aiida-testing
maintainers on PyPI. After this, you (and everyone else) should be able to:

pip install aiida-testing

aiida_testing package

Subpackages

	aiida_testing.export_cache package
	Module contents

	aiida_testing.mock_code package
	Module contents

Module contents

A pytest plugin for testing AiiDA plugins.

aiida_testing.export_cache package

Module contents

Defines fixtures for automatically creating / loading an AiiDA DB export,
to enable AiiDA - level caching.

aiida_testing.mock_code package

Module contents

Defines fixtures for mocking AiiDA codes, with caching at the level of
the executable.

	
aiida_testing.mock_code.mock_code_factory(aiida_localhost, testing_config, testing_config_action, mock_regenerate_test_data, mock_fail_on_missing, request: FixtureRequest, tmp_path: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path])

	Fixture to create a mock AiiDA Code.

	testing_config_action :
	Read config file if present (‘read’), require config file (‘require’) or generate new config file (‘generate’).

	
aiida_testing.mock_code.mock_regenerate_test_data(request)

	Read whether to regenerate test data from command line option.

	
aiida_testing.mock_code.pytest_addoption(parser)

	Add pytest command line options.

	
aiida_testing.mock_code.testing_config(testing_config_action)

	Get content of .aiida-testing-config.yml

	testing_config_action :
	Read config file if present (‘read’), require config file (‘require’) or generate new config file (‘generate’).

	
aiida_testing.mock_code.testing_config_action(request)

	Read action for testing configuration from command line option.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aiida_testing	

 	
 	
 aiida_testing.export_cache	

 	
 	
 aiida_testing.mock_code	

Index

 A
 | M
 | P
 | T

A

 	
 	
 aiida_testing

 	module

 	
 aiida_testing.export_cache

 	module

 	
 	
 aiida_testing.mock_code

 	module

M

 	
 	mock_code_factory() (in module aiida_testing.mock_code)

 	mock_regenerate_test_data() (in module aiida_testing.mock_code)

 	
 module

 	aiida_testing

 	aiida_testing.export_cache

 	aiida_testing.mock_code

P

 	
 	pytest_addoption() (in module aiida_testing.mock_code)

T

 	
 	testing_config() (in module aiida_testing.mock_code)

 	
 	testing_config_action() (in module aiida_testing.mock_code)

 nav.xhtml

 Table of Contents

 		
 The aiida-testing pytest plugin

 		
 User guide

 		
 Getting started

 		
 Installation

 		
 Usage

 		
 Using mock_code

 		
 Limitations

 		
 Using export_cache

 		
 Developer guide

 		
 Full setup

 		
 Running the tests

 		
 Automatic coding style checks

 		
 Continuous integration

 		
 Online documentation

 		
 Local documentation

 		
 PyPI release

 		
 API documentation

 		
 Subpackages

 		
 aiida_testing.export_cache package

 		
 aiida_testing.mock_code package

 		
 Module contents

_images/AiiDA_transparent_logo.png

_static/minus.png

_static/plus.png

_static/file.png

